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Brit. J. Phil. Sci. 41 (1990), 351-375 Printed in Great Britain 

The Uses and Abuses of the 
History of Topos Theory 

COLIN McLARTY 

ABSTRACT 

The view that toposes originated as generalized set theory is a figment of set 
theoretically educated common sense. This false history obstructs understanding 
of category theory and especially of categorical foundations for mathematics. 
Problems in geometry, topology, and related algebra led to categories and toposes. 
Elementary toposes arose when Lawvere's interest in the foundations of physics 
and Tierney's in the foundations of topology led both to study Grothendieck's 
foundations for algebraic geometry. I end with remarks on a categorical view of the 
history of set theory, including a false history plausible from that point of view that 
would make it helpful to introduce toposes as a generalization from set theory. 
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I INTRODUCTION 

The widespread impression that 'the primary task [of topos theory] is to find an 
axiomatic characterization of the usual category of sets' (Bell [1982], p. 293) 
rests on a common sense history of toposes which is suggested more often than 
affirmed outright. Bell says it parenthetically with an ambiguous modifier: 
'(This is essentially the way the idea of a topos actually did emerge!)' (Bell 
[1982], p. 293). Goldblatt does assert it. After mentioning the Scott-Solovay 
work on Boolean valued models for set theory he says 'Meanwhile the notion of 
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352 Colin McLarty 

an elementary topos had independently emerged through Lawvere's attempts to 
axiomatise the category of sets' (Goldblatt [1979], p. xi). 

Goldblatt strongly suggests category theory as a whole was shaped by 
generalizing set theory. In explaining 'the style I [Goldblatt] have adopted' he 
deplores modern mathematical writing which gives abstract definitions before 
it 'reveals the original motivation,' so that 'the student is not actually shown 
the genesis of concepts-how and why they evolved-and is thereby taught 
nothing about the mechanisms of creative thinking.' 'All of this,' he says, 
'seems to me particularly dangerous in the case of category theory, a discipline 
that has more than once been referred to as "abstract nonsense"' (Goldblatt 
[1979], p. ix). So one naturally supposes Goldblatt is actually showing how 
and why the concepts of category theory evolved when he starts with sets and 
functions, abstracts to the axioms of a category, and shows how to express 
various set theoretic constructions using arrows in place of membership. 
Finally he asks what properties a category must have to be like the category of 
sets, and gives the topos axioms as the answer. 

This approach has the advantage of making the subject familiar to 
contemporary logicians. It also has the disadvantage of making it familiar to 
them: It obscures the real novelty. In fact it encourages the smug faith that if 
category theory seems abstract and demanding, as new ways of thinking are 
likely to do, this is 'due merely to the style of some of its expositors' (Goldblatt 
[1979], p. ix). As history it has the advantage of plausibility and the 
disadvantage of being false. 

Category theory arose from a complicated array of practical problems in 
topology. Topos theory arose from Grothendieck's work in geometry, Tierney's 
interest in topology and Lawvere's interest in the foundations of physics. The 
two subjects are typical in this regard. An important mathematical concept 
will rarely arise from generalizing one earlier concept. More often it will arise 
from attempts to unify, explain, or deal with a mass of earlier concepts and 
problems. It becomes important because it makes things easier, so that an 
accurate historical treatment would begin at the hardest point. I will sketch a 
more accurate history of categories and toposes and show some ways the 
common sense history obscures their content and especially obscures 
categorical foundations for mathematics. Yet I doubt the more accurate 
history will help beginners learn category theory. I conclude with a more 
broadly falsified history that could help introduce the subject. 

2 TOPOLOGICAL BACKGROUND 

The history of category theory begins with the history of topology and one 
good step towards a philosophical understanding of categorical foundations is 
to recognize the foundations of topology as an important issue in modern 
mathematics-distinct from though not independent of the more familiar 
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foundations of analysis. In his history of early topology Pont shows how 
Cantor's work on functions in set theory forced others, and in the first place 
Dedekind, to realize that topology is concerned with continuous functions and 
properties preserved by them. Pont says, apropos of the Cantor-Dedekind 
correspondence on this point: 'one can trace the origin of modern topology to 
the discovery that the mappings which transform one manifold into another 
teach us as much about the manifolds as do the manifolds themselves.' (Pont 
[19 74], p. 119). By 'manifold' here (the French has 'ensemble') Pont primarily 
means geometric objects such as topological spaces and the various sorts of 
spaces characterized in Klein's Erlanger Program. For topological spaces the 
relevant mappings are continuous functions and we will simply call these 
'maps' or 'mappings.' 

Almost from the beginnings of topology it has been standard to study a space 
S by studying the ways a circle and other curves and surfaces can be mapped 
into S. Consider the Jordan curve theorem: Let C be any non-self-intersecting 
closed curve in the plane. In other words let C be the image of a one-to-one 
mapping from a circle to the plane. The C cuts the plane into two pieces--one 
inside the curve and one outside. This uses mappings of a circle into the plane 
to partially describe the plane. 

By the 1930s proofs of this and other deep theorems in topology had found 
neat, systematic expression using homology. An homology theory associates 
groups to topological spaces so that the group structures reflect topological 
structure. An homology theory also associates group homomorphisms to 
maps-a fact topologists in the 1930s used heavily but considered secondary 
to the association of groups to spaces. There were many homology theories, 
the relations between them were not well understood, and it seemed that 
specific calculations in homology could be made more systematic than they 
were. 

3 CATEGORY THEORY 

In the early 1940s Eilenberg and Mac Lane began collaborating to get to the 
bottom of this connection between algebra and topology. They noticed that 
natural isomorphisms arose repeatedly in specific calculations of homology and 
in general theorems. A practical intuitive idea of a natural isomorphism or 
'natural equivalence' was current at the time but Eilenberg and Mac Lane's 
work required precision on this point. In Mac Lane's words 'we had to discover 
the notion of a natural transformation. That in its turn forced us to look at 
functors, which in turn made us look at categories' (Mac Lane [1976], p. 136, 
cf. [1971], p. 18). They gave an extensive account of category theory in 'The 
General Theory of Natural Equivalences' in 1945, with the category of sets as 
one example among many. 

The specific natural transformation that first caught their attention 
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occurred in calculating the Cech cohomology of the complement to the p-adic 
solenoid in a sphere but it is not just this one example that is too complicated to 
go into. For even a rough understanding of the problems they faced we would 
have to go into the array of homology theories at the time and the forefront of 
1940s abstract algebra, and we would do this without using category theory, 
and we would waste a lot of time on things category theory has now made 
much easier. We could give a few trivial examples just before reversing the 
order of discovery to define categories, functors, and natural transformations 
but precisely the examples serious enough to have motivated the definitions 
are too hard to be worth giving now without benefit of categorical hindsight. 
Plus, most of the examples are examples only in hindsight: We have to look at 
them in ways specialists at the time did not dream of. 

Sets and functions, for example, did not form a category under the set 
theorist's definition of a function. Most often the set theorist's definition 
requires a function to have a set as domain of definition but not a codomain in 
the sense of category theory. For the set theorist there is a well defined function 
whose domain is the set of real numbers and which takes each number to its 
square. For category theorists the definition is not complete until we specify a 
codomain, which will contain all values of the function but need not coincide 
with the set of those values. So there is one functionf: R --R which takes each 
real number to its square taken among the real numbers and a different one 
g:R -R + also taking each number to its square but now taken among the 
non-negative reals. On one level the stipulation that an arrow in the category 
of sets must have a specified codomain is a minor technicality but it is useful in 
describing objective features of functions and Eilenberg and Mac Lane knew it 
was a conceptual innovation in thinking about sets (conversation with Mac 
Lane, summer 1988).1 Instead of just being defined on a set a function in the 
category of sets goes from one set to another. 

Set theorists did not consider sets and functions equally important. The basis 
of set theory has been to see each set as an independent entity, determined by 
its own members without regard to any other sets. Set theorists were justifiably 
proud of their logical achievement in reducing functions to sets. Even von 
Neumann's axiomatization of set theory by way of functions makes no use of 
functions from one set to another. He only uses characteristic functions of 
sets-functions defined on the whole universe, taking one of two values which 
von Neumann [1925] calls A and B. Set theorists thought in terms of a discrete 
universe of separate sets, not a category of sets linked by functions. 

Topologists, on the other hand, had long thought of each map as going from 
one space to a specific other space. A closed curve in a space S has long been 
seen as a map from a circle to S. And no one would confuse curves on the torus 
with curves in 3-space even if the torus might happen to be defined as a 

1 
I will cite conversations when it seems helpful to establish my source. 
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subspace of 3-space. Every circle in 3-space can be continuously contracted to 
a point while a circle drawn around a torus can not. Such differences are 
crucial in topology. 

More than that, topologists commonly thought of spaces as linked by maps. 
The topology of a space was revealed by its maps to and from other spaces. This 
reflected standard working methods in topology, as in the Jordan curve 
theorem and its proof. Homology theorists thought this way in algebra also. 
They introduced the modern definition of group homomorphism twenty years 
or more before group theorists began to use it. (See Seifert and Threlfall 
[1934].)2 This more general definition was crucial in homology since maps 
between spaces generally do not induce homomorphisms between groups in 
the narrower sense recognized by group theorists at the time. 

Topologists even used the arrow notation a few years before Eilenberg and 
Mac Lane. Mac Lane says 'the arrow f: X-+ Y rapidly displaced the occasional 
notationf(X) c Y for a function. It expressed well a central interest of topology. 
Thus a notation (the arrow) led to a concept (category)' (Mac Lane [1971], 
p. 29). But Eilenberg and Mac Lane were the first to declare arrows were as 
important as spaces. 

Steenrod followed them in this. He jokingly tagged category theory 'abstract 
nonsense' and made it central to his axiomatics for homology. By giving maps 
at least as much attention as spaces Steenrod made homology theory much 
more accessible and more powerful at the same time. 

The broader significance of category theory was clear to Eilenberg and Mac 
Lane in1945: 'In a metamathematical sense our theory provides general 
concepts applicable to all branches of abstract mathematics, and so contri- 
butes to the current trend towards more uniform treatment of different 
mathematical disciplines' (Eilenberg and Mac Lane [1945], p. 236). They 
foresaw no special application to set theory, but to the whole of abstract 
mathematics. 

4 THE 1950S 

Algebraic topology remained almost the sole focus of work in category theory 
through the 1950s. In particular no one followed up the 'metamathematical' 
remark of Eilenberg and Mac Lane by working on categorical foundations for 
mathematics. And yet the two major events in category theory in this decade, 
both results of detailed work in topology, were also major steps towards 
categorical foundations. These were the axiomatization of abelian categories 
and the discovery of adjunctions. 

2 Group theorists into the 1950s generally counted as homomorphisms only isomorphisms and 
projections onto quotient groups. In hindsight they lacked the idea of a codomain as opposed to 
an image so they recognized only surjective homomorphisms, where the image coincides with 
the codomain. 
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Abelian groups have a role in homology but modules and other similar 
structures were also used, some fairly difficult to work with. Mac Lane saw that 
what mattered was not so much similarity of individual structures as similarity 
of their relations among themselves. That is, not so much that a module, for 
example, is 'like' an abelian group but that modules relate to each other the 
way abelian groups relate to each other. More succinctly, a category of 
modules is 'like' the category of abelian groups. Mac Lane set out to find just 
what the relevant 'likeness' was. That is, he sought axioms, in categorical 
terms, to describe just the categories that can be used in place of the category of 
abelian groups in homology. He called any category satisfying his axioms an 
abelian category, but the axioms he offered in [1950] were too weak and did not 
catch on. In the course of this work Mac Lane gave the first categorical 
definitions of products, coproducts, and other related constructions, some of 
which also exist in the category of sets and some of which do not.3 

At Eilenberg's suggestion but independently of Mac Line's work Buchs- 
baum in 1956 also tried to characterize these categories calegorically. Then in 
1957, independently of both the others, Grothendieck gavp the now standard 
axioms for an abelian category. His axioms were simple and powerful and he 
showed they had important applications in topology (specifically, they were 
useful with sheaf categories). Conceptually this is not like axioms for an 
abelian group. This is an axiomatic description of the whole category of abelian 
groups, and other similar categories. We pay no attention to what the objects 
and arrows are, only to what patterns of arrows exist between the objects. The 
basic axioms let you perform the basic constructions of homological algebra 
and prove the basic theorems with no use of set theory at all. This substantially 
simplified homological algebra. 

Grothendieck had no special interest in the foundations of mathematics and 
was not trying to avoid set theory. Beyond the basic axioms for an abelian 
category (that is, beyond AB1 and AB2) he offered stronger axioms for 
particular kinds of abelian categories and these did use sets. But his work was 
profound enough to touch foundations. His basic axioms were the first purely 
categorical foundation for a mathematical subject, while their practical 
usefulness made them the first work in category theory to draw wide 
mathematical attention. 

About the same time, Kan defined adjunctions. We will look at his work more 
closely in the Appendix. Kan was working on problems in algebra and in the 
topology of simplicial spaces but his definition was far more broadly important 
than that. Mac Lane has said Kan's was the first work to convince him general 
category theory should be pursued in its own right and not just as a language 
for use in other areas of mathematics. Eilenberg and Mac Lane had written the 

3 Mac Lane also wanted to explore duality in these categories and its role in homology. Duality 
became an important theme in category theory in the 19 50s and Freyd has stressed that it is a 
thoroughly non-set-theoretic idea. (See Mac Lane [1971] p. 32, p. 53, and passim.) 
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'General Theory of Natural Equivalences' at such length because they expected 
it to be the last article on general category theory! (Mac Lane [1978], p. 21, 
and [1988], p. 334 and p. 345.) 

Also in the late 1950s category theory began to be used in differential 
geometry by way of cohomology (a close relative of homology) and K-theory. I 
will only mention this, because it is beyond the scope of this paper and I do not 
know much about it. But I pass over it with some regret because Mac Lane has 
also chosen to omit such things from his more general history of category 
theory, on the grounds that they are 'applications'. 

5 THE I96OS 

Freyd's [1964] work neatly marks the transition from category theory of the 
1950s to that of the 1960s and is also interesting in our context for its 
historical remarks and for its unusually extensive effort to introduce category 
theory in accurate historical order. Freyd organized the folklore, including his 
own work, and focused on themes that would remain important: his adjoint 
functor theorems, functor categories, theorems relating all abelian categories 
to categories of groups and modules, and more. Through the 1960s category 
theory developed in more directions than we can follow so from here on we will 
just pursue toposes and categorical foundations for mathematics. 

Toposes originated in Grothendieck's work in the 1960s. Algebraic 
geometry studies spaces defined by polynomial equations, as x2 + y2 = 1 defines 
a circle. Grothendieck found a powerful way to define and study categories of 
such spaces. He called these categories toposes and explained: 'As the word 
"topos" is itself meant precisely to suggest, it seems reasonable and legitimate 
to the authors of this Seminar to consider that the object of topology is the 
study of toposes (and not only of topological spaces)' (Grothendieck and Verdier 
[1972], p. 301).4 

Every topological space gives a topos, namely the category of sheaves on the 
space. The category of sets is a topos, corresponding to a one point topological 
space, but most toposes do not correspond to any classical topological space. 
The categories of spaces described above certainly do not. 

The key to Grothendieck's claim that toposes are the proper objects of 
topology is that the topological notion of cohomology generalizes very nicely to 
toposes. In fact Grothendieck designed toposes by looking for a powerful 
natural generalization of cohomology as defined in standard topology which 
would embrace other concepts which he found relevant to his work in 
4 Notice as a point of orthography that 'topos' is a French word, formed from 'topologie,' and not 

a Greek word. In writing, Grothendieck always forms the plural according to the French rule 
for words ending in 's,' so it is invariant-'les topos.' So the English plural ought to follow the 
English rule--'toposes.' Freyd, a confessed lover of classical endings and the inventor of cosmoi 
and logoi among other types of categories, says he heard that Grothendieck spoke of 'topoi' in 
Buffalo. I regard this as biased hearsay which can not stand against the published record. 
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geometry (notably Galois theory). The generalization is not merely formal. 
Many objects which did arise in classical geometry, and which acted more or 
less like classical spaces but were not exactly, are exactly toposes. The search 
for more general cohomology theories succeeded and Grothendieck and his 
school used these theories to answer a number of long standing questions in 
algebraic geometry. One famous result was Deligne's proof of a Weil 
conjecture, which won him a Fields Medal-the analogue in mathematics to a 
Nobel Prize. Mumford and Tate [1978] gives a general account of this work and 
of Grothendieck and Deligne as mathematicians. More recently Faltings, not a 
student of Grothendieck, won a Fields Medal for work bearing on Fermat's last 
theorem using one of Grothendieck's cohomology theories. (See Kolata [1983] 
and the review in Mathematical Reviews 8 5g 1102 6a, b.) Grothendieck himself 
won a Fields Medal in the 1950s for work in functional analysis. 

Grothendieck came to see that in many ways you could work with a topos as 
if it was the category of sets. I must say the similarities he had in mind were so 
arcane that few people found them compelling even after he pointed them out. 
Mike Barr recalls the Uldom conference in 1971 where Grothendieck tried 
unsuccessfully to persuade logicians that toposes were usefully similar to the 
category of sets. Barr was already convinced of the point because he knew 
Lawvere and Tierney's work, as Grothendieck did not at that time, but even he 
found Grothendieck's arguments unpersuasive. The point is that the similari- 
ties were not obvious and were not simply designed in to the definition. 
Grothendieck discovered them by his experience with toposes. (Here he was 
helped by earlier experience with the way properties of the category of abelian 
groups lift to categories of sheaves of groups.) 

As an undergraduate in the 1950s Lawvere studied physics with Truesdell 
and Noll. It was there he first encountered categories and found them 'too 
abstract for a serious physicist'; but by the summer of 1959 he was busy 
translating Gottschalk and Hedlund's Topological Dynamics into categorical 
terms (conversation with Lawvere 198 7).s Truesdell convinced him he could 
best pursue his interests as a mathematician, so after graduating in 1960 he 
went to Columbia graduate school in mathematics. His project in the 
foundations of physics expanded to a project for categorical foundations for 
mathematics. Or, rather, functorial foundations. Category theory generally 
says 'look to the arrows,' so Lawvere's foundations would focus on functors 
more than isolated categories. He began to think about the category of 
categories. The problem was how to describe that category in terms of the 
patterns of functors in it rather than in terms of what categories and functors 

s Lawvere has also said Kelley [1955] was important to him, as a book which takes foundations 
seriously as a part of the practice of mathematics. He recalls that he first heard of categories in 
Kelley's discussion of Eilenberg, Mac Lane, and Steenrod's work, where Kelley says 'The study 
of objects and maps might be called the galactic theory, continuing the analogy whereby the 
study of a topological space is called global.' (pp. 246-7) 
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might be 'made of.' He looked for functorial descriptions of various categories. 
He even spoke of characterizing the category of sets without using elements, an 
idea Eilenberg rejected and Mac Lane remembers dismissing as impossible 
(Mac Lane [1988], p. 342). 

His first finished work was his 1963 dissertation on algebraic theories: 
theories such as the theory of groups or rings, given simply by equations on 
operators. He showed how to treat an algebraic theory itself as a category so 
that its models are functors. For example the theory of groups can be described 
as a category so that a group is suitable functor from that category to the 
category of sets (and a Lie group is a suitable functor to the category of smooth 
spaces, and so on). He found a list of properties a category has if and only if it is 
the category of models of an algebraic theory and he showed how to recover 
the theory from the category of models. As a context for this he spent almost 
half of the dissertation giving a preliminary account of the category of 
categories. He published a more polished account of the category of categories 
as a foundation for mathematics three years later in Lawvere [1966]. 

This work made heavy use of the category of sets. At the same time Lawvere 
was teaching calculus at Reed college, using the usual rudiments of set theory. 
He found the membership theoretic foundation for set theory pedagogically 
awkward and not to the point so he worked out a categorical axiomatization of 
the category of sets. In other words he gave a version of set theory based on 
functions and composition of functions-set theory without a set membership 
relation.6 He distributed a mimeographed paper on this and published a short 
note in [1964]. 

One measure of the relative unimportance of set theory as a model for 
categorical foundations is that, even when categorical axioms for the category 
of sets were given, no one pursued them. Lawvere abandoned them almost 
without publication. Later, when an extension of the elementary topos axioms 
turned out to be equivalent to these, category theorists began to work on the 
topos theoretic version (notably Bunge, Cole, Mitchell, and Osius). But as long 
as the axioms seemed to relate only to set theory category theorists including 
Lawvere had little to do with them. Categorical axioms for set theory were not 
received as a major step, let alone a decisive one, towards 'an entirely new 
foundation for mathematics!' (Goldblatt [1979], p. 3). 

What some category theorists did pursue was the idea of categorically 
characterizing other categories. Bunge described categories of set valued 
functors in her dissertation under Freyd. Schlomiuk [1970] offered a 
categorical treatment of the category of topological spaces. 

In the spring of 1966 Lawvere encountered Grothendieck's work in a series 

6 Lawvere's set theory has been called the first foundation for mathematics not based on 
membership but that is somewhat unfair to the lambda calculus and related work in logic. 
Category theorists have recently taken an interest in lambda calculus, due largely to Dana 
Scott's work. (See Lambek and Scott [1986].) 
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of lectures by Gabriel in Oberwolfach. He was intrigued because the spaces in 
some of Grothendieck's toposes included a very simple kind of infinitesimals 
and Lawvere thought this might serve as an efficient foundation for differential 
geometry and then for axiomatizing classical physics. In 1967 Lawvere 
lectured on this idea under the name 'categorical dynamics' and later 
published notes from the lectures in Lawvere [1979].7 

One salient problem was that Grothendieck toposes were extremely complex 
set theoretic constructs-far more difficult than the usual analytic foundations 
for differential geometry. Rather incredibly, Lawvere believed the essential, 
relevant aspects of toposes could be described much more simply. 

His confidence in the project was strengthened by Dana Scott's work on 
Boolean valued models, which he heard about at a meeting that same spring at 
Oberwolfach. Even here it was not the set theoretic aspect of the work that 
caught Lawvere's attention but the logical aspect.8 He has said the indepen- 
dence proofs in ZF were less important to him than a paper in which Scott 
proved the continuum hypothesis independent of a kind of third order theory of 
the real numbers, because, Scott says: 'once one accepts the idea of Boolean 
values there is really no need to make the effort of constructing a model for full 
transfinite set theory' (Scott [1967], p. 109). To Lawvere this seemed not only 
simpler than the version for ZF but more to the point. 

Lawvere saw that 'Boolean valued models should be a fragment of the 
Grothendieck theory.... They filled in a corner of the geometric idea' 
(conversation, 1988). He feels his judgment is confirmed by Cartier's [1979] 
report to the Bourbaki Seminar, dedicated to Grothendieck, describing 
Lawvere and Tierney's work on toposes and on Boolean valued independence 
proofs. 

This is as good a place as any to point to Scott's early encouragement of 
Lawvere's work in categorical foundations, although Scott hardly agreed with 
all of Lawvere's ideas. Scott particularly differed with Lawvere on set theory 
without a set membership relation. Scott invited Lawvere and Freyd to the 
1963 Berkeley Symposium on the Theory of Models. (See Freyd [1965] and 
Lawvere [1965].) There Lawvere discussed categorical foundations with Freyd 

7 Information on Lawvere's interest in Grothendieck's work comes from Lawvere [1979] and 
conversations with Lawvere in 1987. (Mac Lane [1988], p. 353 mistakenly says Gabriel's 
lectures were in 1967.) Mac Lane has said Lawvere [1979] cannot quite be regarded as an 
historic document because it was too much revised before publication ([forthcoming], p. 32) 
but for the present purpose I find no significant difference between the published version and 
the notes Mac Lane took during the lectures. I thank Professor Mac Lane for sending me a copy 
of his notes. 

8 Lawvere had been interested in something like this idea. For example, let RI be the ring of I- 
tuples of real numbers with coordinatewise addition and multiplication. As usually conceived, 
it is not a field. Lawvere was interested in the idea that R' is a field if you take truth values in 21, 
where disjunction is union and so on, as in Boolean valued models. The basic idea, that a 
structure complex from one point of view may be simpler if you let the logic vary, has worked 
out in toposes. 

This content downloaded from 185.2.32.121 on Tue, 24 Jun 2014 21:11:04 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


The Uses and Abuses of the History of Topos Theory 361 

as they drove around the San Francisco Bay. Freyd recalls believing that if one 
wanted foundations for mathematics they should be in category theory but he 
did not want foundations and was not very sympathetic with Lawvere's views 
(conversations with Freyd and Lawvere, 1987). 

Much of Lawvere's work for the next few years and all his publications 
concerned logic, although Boolean valued models are not mentioned in any 
published or unpublished work I know of. What his dissertation had done for 
algebraic theories he now aimed to do for theories in first order logic, or higher 
order logic, or intuitionistic logic. He had already seen in 1963 that universal 
and existential quantifiers were adjoints to substitution and brought this up in 
discussion at the Berkeley Seminar, but around 1968 he uncovered connec- 
tions with other branches of mathematics. He described his work as studying 
adjoint functors 'of a kind that arise in formal logic, proof theory, sheaf theory, 
and group representation theory,' and more (Lawvere [19 70], p. 1; cf. [1969]). 
This is when Lawvere saw how to treat the comprehension axiom as an 
adjunction. Again, the geometric connections made the work important to 
him, assuring him he was on to fundamentally important structures and not 
artifacts of logical formalism. 

Lawvere met Tierney, who was interested in Grothendieck's work in 
topology, and 1969-71 they collaborated in a sustained effort to axiomatize 
Grothendieck's toposes. This led to a surprisingly short, simple list of axioms 
giving all the fundamental results of topos theory independently of any set 
theory (Tierney [1973]). Every Grothendieck topos was a model of the axioms, 
including the category of sets. More important, the powerful and apparently 
higher-order constructions used in Grothendieck's general theory of toposes 
could be performed using only these axioms. 

Look at the eight axioms of Lawvere [1964] with hindsight: Axioms 1 and 2 
say the category has finite limits and colimits and is cartesian closed. The 
second half of theorem 5 says the category has a subobject classifier. These 
make up one of the original versions of the Lawvere-Tierney topos axioms. 
(The existence of colimits turned out to follow from the other axioms. Adding 
axioms 3, 4, 8 and a variant of 5 gives the current axioms for the category of 
sets.) But in 1964 there was nothing to point out that just those were 
important. In particular Lawvere did not pursue the idea of subobject 
classifiers during the next few years.9 For some time Lawvere and Tierney 
focused on partial map classifiers and during that time they expected the topos 

9 In the category of sets the subobject classifier is also the coproduct 1 + 1. Between 1964 and 
1969 Lawvere did pursue the idea of 1+1 as an object of truth values. (See for example 
Lawvere [1967].) He has said he focused on 1 + 1 as a coproduct rather than on the subobject 
classifying property because 1 + 1 is preserved by exact functors while subobject classifiers are 
rarely preserved by functors. This generalization from the case of sets was rather a dead end. 
Goldblatt ([1979, p. 3, cf. p. xi) turns his own predilection for logic into false history when he 
says Lawvere and Tierney began studying categories with subobject classifiers and then 
realized Grothendieck toposes were such. 
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axioms to be fairly complicated. A crucial step was their realization that a 
subobject classifier could be used to get all partial map classifiers and other 
central constructions in toposes. That made the present simple axioms 
possible. 

Lawvere and Tierney knew how to specialize their axioms to the category of 
sets and as one check on the usefulness of the axioms they investigated the 
continuum hypothesis. It turned out that the Boolean valued models proof of 
independence applied very neatly to their version of set theory. When Tierney 
[19 72] published this work some people concluded topos theory was basically 
a new framework for independence proofs in set theory, which is how I heard 
of toposes in 19 74, but that was only because independence proofs were more 
familiar to logicians and thus more accessible to them than the geometric 
motives. 

Lawvere's project of axiomatizing differential geometry has developed under 
the name 'synthetic differential geometry.' Kock [1981] gives a clear 
introduction and many references. McLarty [1988] discusses foundational 
aspects. Moerdijk and Reyes [forthcoming] discusses in detail models defined in 
sets (for this purpose it does not matter whether sets are axiomatized 
membership theoretically or categorically). Lawvere also pursues axioms for 
other toposes adapted to problems in geometry and topology and he retains his 
interest in the foundations of physics. (See Lawvere and Schanuel [1986].) 
Tierney works on Grothendieck's ideas, using the ideas he and Lawvere 
developed. (See, for example, Joyal and Tierney [1984].) Among their main 
tools is the insight that many constructions in toposes can be understood by 
looking at them in the category of sets and then 'lifting' them to the general 
case. They made this insight more plausible and more powerful than 
Grothendieck had done. But, again, it is an insight, not a definition of toposes. 

Lawvere offers an explanation of why properties of classical sets so often lift 
into toposes. He describes objects in a topos as continuously variable sets while 
classical set theory treats the special case of constant sets. He says: 'Every 
notion of constancy is relative, being derived perceptually or conceptually as a 
limiting case of variation and the undisputed value of such notions is always 
limited by that origin. This applies in particular to the notion of constant set, 
and explains why so much of naive set theory carries over in some form into 
the theory of variable sets' (Lawvere [1975], p. 136; cf. [1979]). For Lawvere 
topos theory studies variable sets and structures that actually exist. 

6 RESPONSES TO CATEGORICAL FOUNDATIONS 

Here we look at two fairly typical examples of incomprehension of categorical 
foundations both caused more by immersion in set theoretic thinking than by 
specific beliefs about the history of category theory. That is, for now we treat 
these authors as actors in that history rather than commentators on it. 
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Goldblatt says of Lawvere's 1964 axioms for the category of sets: 'A 
shortcoming of this work was that one of the conditions was set theoretic in 
nature. Since the aim was to categorically axiomatise set theory, i.e. to produce 
set theory out of category theory, the result was not satisfactory, in that it 
made use of set theory from the outset' (Goldblatt [1979], p. 3). This claim is 
utterly groundless, so it is interesting to try to guess what Goldblatt had in 
mind. Lawvere's axioms are clearly labeled and clearly if informally stated in 
the language of elementary category theory (that is, a first order language 
whose non-logical constants are operators for domain, codomain, and 
composition of arrows). They use no set theoretic conditions. On the last page 
(Lawvere [1964], p. 1510) there is a metatheorem showing that any two 
models that satisfy a further 'set theoretic' condition are equivalent categories. 
Perhaps Goldblatt mistook this condition for an axiom, although it is hard 
to see how he could. Or perhaps he thought the 'set theoretic' condition had 
to be understood in terms of ZF or some other membership based set theory 
as opposed to categorical set theory and that the metatheorem itself 
somehow made categorical set theory dependent on membership based set 
theory. 

This sort of incomprehension is common in philosophical comments on 
categorical foundations: allowing the object theory to be categorical set theory 
but assuming it requires membership based set theory as metatheory. In fact 
categorical set theory can stand with no metatheory at all, as ZF is often taken 
to do. Or you can use it to prove its own metatheorems just as ZF is often used to 
prove its own; or if you like you could use either one for metatheorems on the 
other. 

To complete the picture Goldblatt [1979] says the dependence on 'set 
theory' was removed in the later topos theoretic axioms for the category of sets. 
These axioms are well known to be logically equivalent to the 1964 version. As 
mentioned above, the topos theoretic axioms are among the axioms and 
theorems of Lawvere [1964]. It is trivial to prove the 1964 axioms from the 
topos theoretic version. Clearly Goldblatt did not make these mistakes out of 
technical incompetence. Rather, he must have been so accustomed to 
membership based set theory that he read into the 1964 axioms a non-existent 
vitiating dependence on 'set theory.' 

Mayberry [1977] shows more appreciation than Goldblatt for the mathema- 
tical uses of category theory but he prefers set theory for foundations. We 
would not deny him his preference, but he goes further and says no one has 
ever even thought of category theory as a foundation for mathematics. We will 
quote him at length because he writes with such flair. Mayberry distinguishes 
formal set theory such as ZF, which he claims is not foundational, from 
intuitive set theory which he claims is the foundation of all mathematics; and 
he defends his claim against category theory. The citation, emphasis, 
parentheses and ellipsis in the following quote of Mayberry ([1977], p. 16) 
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arguing with quotes from Mac Lane are in the original except for my ellipsis in 
line 2: 

Can we simply get rid of set theory? Well, that would be much more difficult than 
the category theorists seem to realise. For example, [...] Mac Lane writes 
([1971], p. 24): 

... there has been considerable discussion of a foundation for category 
theory (and for all mathematics) not based on set theory. 

But he means only formalised set theory, the official theory, here, not the 
intuitive set theory that provides the semantics for axiomatic theories. This is 
clear from the next sentence: 

That is why we initially gave the definition in a set-free form, simply 
regarding the axioms as first order axioms on undefined terms 'object of C', 
'arrow of C', 'composite', 'identity', 'domain', and 'codomain'. 

Of course he intends the meta-categories to be models of these axioms, and these 
models are structures of the unofficial, intuitive set theory. (Notice how this 
theory is simply taken for granted.) 

Notice how it is taken for granted indeed, but notice it is taken so by Mayberry 
and not by Mac Lane. Mac Lane never suggests that all intuitive structures 
must be analyzed into intuitive sets and since his [1986] book it is clear he 
does not believe so. Long training in one conception of mathematics has 
accustomed Mayberry to think so, as many mathematicians and logicians 
today do, but he has no grounds for attributing this belief to everyone. 

Mayberry goes on (1977): 'one does not have to look deeply into Lawvere's 
[1964] treatment of the category of sets, or his [1966] treatment of the 
category of categories, to see that the idea of denying intuitive set theory its 
function in the semantics of the axiomatic method has simply never entered 
his head.' Mayberry may be an expert on not looking deeply into Lawvere's 
work, but here he has simply confused his own head with Lawvere's. Lawvere 
believes 'intuitive' categories, and spaces, and other structures are just as real 
(or, more accurately, just as ideal) as 'intuitive' sets. However little Mayberry 
may be able to conceive it, sets have no priority in semantics or in reality 
according to Lawvere. 

Mayberry's further objections to categorical foundations all rest on his belief 
that all mathematics is formalization which requires semantics and all 
semantics is in intuitive set theory. There is a clear historical origin for this 
belief but that is not an argument, and in fact many category theorists reject 
both halves of this claim. When Mayberry is faced with category theorists 
offering an alternative conception of mathematics he simply cannot hear 
them. He insists they do not mean what even he sees they mean to mean. 

In the end it seems the reason Mayberry opposes categorical foundations 
while Goldblatt favors them is that Mayberry understands the issue better. 
That is, neither one imagines an approach to mathematics substantially 
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different from current set theory. In Section 7 we will see how Goldblatt tries to 
assimilate topos theory to set theory. But Mayberry understands category 
theory more deeply and sees that as a foundation it would be substantially 
unlike set theory. He only errs in taking what he prefers not to conceive of to be 
inconceivable. 

7 CONSEQUENCES OF COMMON SENSE HISTORY 

Given its falsity to the facts,the history of topos theory as a generalization of set 
theory survives precisely as common sense. For most logicians today set theory 
is common sense; and an elementary topos is in many ways like a universe of 
sets. So when one begins looking at topos theory and finds it takes some effort 
to understand the new ideas (whether or not one attributes this to the style of 
the expositors) it is natural to rely on common sense. It is natural to attend 
most to the most set-like aspects of toposes, and to imagine them as derived 
from set theory, and to do this even without thinking about it. That is how 
common sense works. 

Students afflicted with this misunderstanding have trouble escaping the idea 
that objects are 'really' structured sets and arrows are 'really' structure 
preserving functions. So they keep looking for the truth 'behind' the category 
axioms instead of learning to use the axioms. They have trouble learning 
categorical definitions not because the definitions are too complex but because 
they believe the axioms must 'really mean' something other than what they 
say. 

Excessive focus on sets and functions actually obscures the idea of using 
arrows to reveal structure. The main historical source of that idea is classical 
topology, which was not conceived set theoretically. Just remember Poincar6 
was a founder of topology, and Brouwer one of the creators of homology 
theory. Their practice did not always conform to their theories of foundations 
but neither did it conform to Cantor's or Russell's! This is one point where it is 
hard to imagine how false the common sense history of mathematics is. If set 
theory is the only foundation for mathematics you know, you will have an 
almost irresistible tendency to read set theory back into any mathematics you 
meet. But Poincar6, Brouwer, and most mathematicians at that time did not 
think in terms of sets. They often thought in terms of mappings revealing 
spatial structure. 

Topologists today generally do believe in set theoretic foundations but they 
generally do not care much about foundations. Their work still centers on 
revealing spatial structure by studying continuous maps. 

Sets as handled in current set theory have a great deal of structure in their 
membership relations but this structure is not preserved by functions the way 
group structure is preserved by group homomorphisms and so on. Sets have no 
structure preserved by functions except existence and identity of elements (for 
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every x in the domain there is an f(x) and if x= y then f(x) =f(y)). So the 
category of sets, while important, is not rich. 

The main point of categorical thinking is to let arrows reveal structure. 
Categorical foundations depend on using arrows to define structures. But this 
approach only determines structure, that is it only defines objects up to 
isomorphism. Set theory as practiced today is unique among branches of 
modern mathematics in not generally defining its objects up to isomorphism. It 
is nearly unique in focusing on structure that is not preserved by its arrows. It 
is (and this is nearly a definition of set theory from the categorical point of view) 
the branch of mathematics whose objects have the least structure preserved or 
revealed by their arrows. So set theory as practiced today is a uniquely bad 
example for category theory. 

Of course set theory might not always be practiced as it is today. Lawvere 
points out that the major questions in set theory deal with isomorphism 
invariant properties and are easily stated in categorical set theory: choice, the 
continuum hypothesis, various large cardinals. Since the membership relation 
is unnecessary in stating these problems we might wonder how far it will help 
in settling them. But for now virtually all research in set theory is membership 
theoretic. 

One claim in the common sense history says size restrictions on sets were the 
main motive for categorical foundations. (This one is popular in folklore but 
does not seem to appear in recent literature.) Category theorists deal with such 
things as the category of all sets, which is too large to be a set. So when 
category theorists proposed categorical foundations for mathematics it seemed 
they were trying to overcome such size restrictions. When category theorists 
discussed foundations with set theorists in the early 1960s they did focus on 
size, but that was only because size was a well understood, well established 
issue in foundations. Category theorists's real motives for categorical founda- 
tions were categorical naturalness and simplicity, and these naturally do not 
translate well into set theoretic terms. One way to see this is to notice that the 
purely categorical foundations proposed are generally far weaker than those set 
theorists use, not even as strong as ZF. They do not posit very large categories. 
Set theory can lead to a size obsession but you have to look elsewhere for the 
motives for categorical foundations-you have to learn what categorical 
naturalness and simplicity are. 

The belief that categorical foundations arose by axiomatizing, generalizing 
or abstracting from the category of sets puts too much stress on toposes, seen as 
the most set-like of categories. The category of categories is not a topos so, 
despite its foundational importance and its role in the history of categorical 
foundations, it is omitted from Goldblatt's book. Nor are toposes the only 
categorically axiomatized categories useful in mainstream mathematics. By 
far the most useful today are abelian categories. These are largely a 
generalization from categories of modules and have nothing particular to do 
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with sets, so they have been omitted from the entire philosophical discussion of 
categorical foundations to date. What toposes have in common with albelian 
categories is at least as important in understanding categorical foundations as 
what toposes have in common with the category of sets understood set 
theoretically. 

The idea that toposes, and categorical foundations generally, grew out of set 
theoretic foundations leads to too much focus on isolated categories alto- 
gether. After all, a universe of sets forms one category and if that is your 
starting point it is reasonable to suppose categorical foundations will study 
single categories that might replace it. In fact category theory arose from 
studying relations between categories. The functors and adjunctions that 
connect categories are at least as important as the categories themselves. They 
have been and they remain the focus of attention in category theory. It is only 
because Goldblatt sees topos theory as the latest version of set theory that he 
could write the first half of his book before mentioning functors, and nearly 
omit adjunctions altogether. When he writes 'the viability of the topos concept 
as a foundation for mathematics pivots on the fact that it can be defined without 
reference to functors' (Goldblatt [1979], p. 194) we must read this as saying 
his ability to conceive of toposes as foundations pivots on the fact that formally 
you can hack the topos axioms out of their categorical context and assimilate 
one topos to one universe of sets. He did what he could to avoid the heart and 
the historical origin of categorical thinking because he saw no value to it, 
because it corresponds to nothing in a single set theoretic universe. 

True, Mac Lane [1986] has proposed a single category foundation for 
mathematics, using categorical axioms for a category of sets. But besides that 
this is a conservative approach to categorical foundations it hardly means Mac 
Lane devalues functors and other relations between categories. Far from it. 
Rather Mac Lane devalues foundations. He attaches little importance to them 
and explicitly warns that if you take them too seriously they can become a 
hobble on Mathematics (a word he invariably capitalizes). (See Mac Lane 
[1986], pp. 406-7 and 454-6.) For Mac Lane Mathematics is the study of 
relations among diverse structures and today those are best formalized as 
functors, adjunctions, dualities, and so on. 

More radical categorical foundations aim to bring foundations closer to 
practice. Since (as with Mac Lane) practice is seen as heavily functorial the 
foundations are also. One approach postulates just the categories and functors 
needed for a given purpose. McLarty [1988], for example, postulates a 
category of spaces with enough structure to functorially construct a category 
of sets and two adjunctions between these categories. This assumes at least a 
weak category of categories, so the other approach to radically categorical 
foundations is to attempt to describe 'the' entire category of categories (or 'the' 
entire 2-category of categories, which we will not go into). 

Today there is nothing close to an authoritative categorical axiomatization 
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of a rich enough category of categories to handle all of mathematics as 
smoothly as categorical foundations should. Hatcher [1982] describes 
problems with Lawvere [1966] and efforts to solve them. Experience with 
categorical mathematics and foundations keeps bringing insights. We might 
reach such axioms or 'the' category of categories might remain a guiding 
principle with no fixed formalization. Either way, functors, adjunctions, and 
more will remain at least as important as categories. 

Finally, imposing set theory as a supposed origin of categorical foundations 
tends to leave one with set theory in the end. Thus Goldblatt says 'topos theory 
stands not so much as a rival to set theory per se as an alternative to formalised 
set theory in presenting a rigorous explication, a foundation, of our intuitive 
notion of "set"' (Goldblatt [1979], p. 334). Topos theory is truncated to a new 
way of understanding sets. As a striking example, the topos of smooth spaces, 
now formalized in synthetic differential geometry, was one of Lawvere's main 
motives for exploring toposes and has been the subject of incomparably more 
work by topos theorists than the topos of sets.10 This topos is not mentioned in 
the 450 pages of Goldblatt's [1979] book. Perhaps he deliberately omitted it 
because it is not the topos of sets. More likely he really did not understand any 
references he found to it and took no notice of them, again because it is not the 
topos of sets. Either way Goldblatt, who sees sets at the origin of topos theory, 
also sees explication of sets as the point of topos theory, and can only see sets in 
the end. 

8 FALSIFYING HISTORY ENOUGH 

By now it should be clear that an accurate history of category theory and 
toposes, while important in its own right, is no use as an introduction to those 
subjects. Lawvere has said it would help for teachers to know history better- 
not so much a detailed history of individual works as a well understood history 
of ideas. He even says you could begin teaching category theory by telling the 
students about the solenoid in the sphere so they understand there was a 
specific concrete problem at the origin. But the history in this paper gives little 
clue what a category or a topos is if you do not already know. And if you want 
to find out, do not begin with much of 1930s topology or Grothendieck's 
geometry! The opposite would be a much better idea. To understand classical 
topology you would do well to learn some modern algebra and homology, and 
that will require some category theory. To study Grothendieck's toposes, begin 
with Lawvere and Tierney's elementary topos theory. 

10 Most publications on synthetic differential geometry came too late for Goldblatt's book. It was 
eclipsed by categorical logic and general topos theory for some years. But Wraith, Kock, and 
Reyes had been reviving active interest in it since around 1975 and Reyes was enthusiastically 
working on it when Goldblatt talked with him in Montreal. A great deal of work was in progress 
to appear before Goldblatt's book, including Dubuc's work on models. 
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If history were falsified enough, though, it could make a helpful introduction 
to topos theory. This means more than just misrepresenting it in category 
theory books. Suppose people adopt the categorical approach along with Mac 
Lane's suggested foundations in a categorically axiomatized category of sets. 
They could forget that membership was ever considered fundamental to set 
theory. They could think things like Mostowski's theorems on e-trees were 
merely technical devices. Historians could notice that Cantor often says how 
many elements a set has but he rarely says what its elements are. For example 
he says an ordinal number has as many elements as predecessors. Sometimes 
he even speaks of the set of predecessors of an ordinal. But he does not say an 
ordinal is the set of its predecessors." (See Cantor [1932], pp. 197-8, for 
example.) People could come to think Cantor was simply defining sets up to 
isomorphism in the sense of category theory. 

Lawvere today urges this as one strand in Cantor's thinking. As Lawvere 
points out, a Cantorian cardinal is an abstract set, a 'bag of dots,' whose 
elements are distinct but have no individuating properties. Cantor's cardinals 
correspond to the sets in categorically axiomatized set theory. Lawvere knows 
these axioms go beyond Cantor's own work. (He also believes category theory 
could be used to explicate Cantor's ideas on other sorts of Mengen besides 
cardinals. Much of this comes from conversation but see Lawvere [1976], p. 
119 and passim.) But if people adopt the categorical approach a new common 
sense history could simplify and say this was always the idea of a set. 

People could come to think sets and functions were always understood in 
terms of composition of functions and the rest of category theory but they 
would not call it that. They would call it set theory. They would define, say, the 
product of two sets A and B as a set P and a pair of functions, one from P to A 
and one from P to B, with a certain relation to all other sets with a pair of 
functions to A and B. In advanced classes or philosophy of mathematics classes 
they would point out that the product is not uniquely defined but defined up to 
isomorphism. I have already heard category theorists interpret Halmos and 
Quine as saying the cartesian product of a pair of sets is only defined up to 
isomorphism, that is, every set with functions to A and B meeting the category 
theoretic definition of a product diagram is a cartesian product for A and B (on 
this reading a particular definition of ordered pairs as sets only serves to prove 
every two sets A and B have at least one cartesian product).12 This reading of 

" Compare Dedekind using cuts on the rationals to say how many real numbers there are but 
never saying what real numbers are except that they are our own intellectual creations. He 
explicitly refused to identify them with the corresponding cuts. This is discussed in Stein 
[1988]. 

12 See Halmos [1960], pp. 22-3. Quine's emphasis on the irrelevance of the particular choice of a 
definition of ordered pairs as sets ([1970], p. 36) may reflect some notion of 'definition up to 
isomorphism' but probably also reflects a later reaction against his own earlier papers on one 
definition condensed in 'On Ordered Pairs and Relations' in Quine [1966] pp. 110-13. 
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Halmos and Quine is not entirely defensible and neither is it entirely wrong. It 
is categorical common sense over-hastily interpreting the history of set theory. 

These categorically minded people might define topological spaces and 
continuous maps in terms of sets as we do now (understanding sets differently 
in the first place) but from the start they would focus on describing topological 
structure by maps rather than on the point-set techniques that often dominate 
a first course on topology today. The same would happen with abstract 
algebra, as in fact it already has to a large extent-see 'abstract nonsense' in 
the index of Lang's standard text Algebra. For example, Lang defines tensor 
products categorically and immediately says 'by abstract nonsense, we know 
of course that a tensor product is uniquely determined up to a unique 
isomorphism' (Lang [1971], p. 408) and then uses a set theoretic construction 
to prove tensor products exist. 

Then the categorical viewpoint would be taught as well, or as badly, as 
the set theoretic is now. And then if someone wanted to learn topos theory it 
would be helpful to begin by saying toposes arose by generalizing from set 
theory. 

Of course I do not mean to purvey a new false history of mathematics. (If I did 
I would hardly call it false.) My point is that the history sketched here is no 
more false than the current common sense view: Mathematics has always 
been based on sets, although it took Cantor to make that clear, and set theory 
has always been based on membership so people (or at least a set theorist such 
as Cantor) always understood that you define a set by identifying its elements. 
The history sketched here suits categorical foundations the same way the 
common sense history suits set theoretic ones-in both cases, at the cost of 
truth. 

But another development is also possible. As Lawvere puts it, common sense 
could become more scientific. Set theory brought a level of all embracing rigor 
to mathematics that had never been seen before. So once the tremendous effort 
of creating set theoretic foundations was finished it was easy to believe set 

theory simply clarified mathematical thought as it had been from the 

beginning and would be for the rest of time. (Perhaps some of the creators 
themselves thought so during the process, but they did not come by the belief 

easily!) If categorical foundations, or any other foundations, are accepted then 
we might benefit from the very fact that one rigorous conception has made 
way for another. This new conception certainly did not come from some 
timeless nature of mathematics, nor from meditation on set theoretic 
foundations. Rather, like set theory itself in its time, category theory arose from 
the heart of mathematical practice and offered foundational insights. It might 
become common sense that foundations come out of practice, and will change 
as practice develops, and will lose contact with the subject if they do not 

change with the practice. As Lawvere has put it, 'pure foundations of 
mathematics are no foundations of mathematics at all.' 
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IO APPENDIX 

We will look briefly at adjunctions. Conformably to the thesis of this paper we 
will begin with a late example and only hint at the original ideas. One point of 
this Appendix is to show that the perfectly obvious example we begin with was 
missed for years because it deals with sets. 

Consider sets A and B. Let BA be the set of all functions from A to B. It is clear 
that a function from any set C to BA is practically the same thing as a function 
from the cartesian product C xA to B. That is, any function f:C--+BA 
determines a function f: C x A -+B this way: For any pair < c,a > C x A define 
f(c,a) to be (f(c)) (a). This works sincef(c) is a function from A to B. Conversely, 
given g: C x A-+ B define a function :C--+ BA this way: for each ccC let g(c) be 
defined for all aeA by (g (c)) (a)-=g 

(c,a). The operations are inverse to one 
another. If g =f then g =f and vice versa. 

In fact all of that can be said without using elements. To do so we would 
define an adjunction between cartesian products with A, ( ) x A, and function 
sets from A, ( )A. Because this adjunction exists in sets we say the category of 
sets is cartesian closed. A fuller description can be found in Mac Lane [1986], 
and complete details in Mac Lane [1971]. 

The remark about sets of functions is fairly trivial. People have probably 
noticed it from time to time since the beginning of set theory and it was central 
to the idea of lambda conversion in the lambda calculus. But, largely because it 
is trivial in itself, it was not a source of the idea of adjunction, it was not even 
the first example of cartesian closedness. 

Kan [1958] discovered adjunctions in his work on tensor products in 
algebra and simplicial sets in topology. 

Consider two abelian groups A and B. The set of all group homomorphisms 
from A to B is itself an abelian group in a natural way. Call it hom (A, B). 
further, any two abelian groups C and A have a tensor product C?A, also an 
abelian group (the tensor product is not the cartesian product, although that is 
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also an abelian group). Algebraists in 1958 knew a group homomorphism 
from any C to hom (A, B) is practically the same thing as a group 
homomorphism from C0A to B. The calculation involved in verifying this is 
not very much like the one for function sets. 

Kan noticed that a similar situation existed for simplicial sets, and he gave 
other related examples. One from topology is worth putting here although it 
was not original with Kan. Let B and C be topological spaces and I the unit 
interval. Let BI be the space of all maps from I to B, with the compact open 
topology. Then a map from C to B' is practically the same thing as a map from 
the product space C x I to B. The calculation here is almost exactly the same for 
function sets except that you have to check continuity (and you do not get the 
requisite continuity for arbitrary spaces in place of I). 

Kan also gave unrelated examples of adjunctions, and he defined various 
other categorical constructions and did much to create category theory as a 
theory in its own right. He did not mention the example of function sets. He 
used the category of sets in some examples. With hindsight he came 
excruciatingly close to function sets, but he did not give them. Nor are they in 
Freyd [1964], six years after Kan's paper. As Freyd says, any one in the field 
would have easily recognized the function set adjunction if they had been 
asked about it but a category theorist at the time was likely not to think about 
sets. 

Lawvere arrived at the idea of cartesian closedness by thinking about the 
category of categories. He considered the category of functors from a category 
A to B and tried to define it functorially in the category of categories. The 
category of functors, BA, was well known as were product categories C x A. 
Lawvere recognized that a functor from any category C to BA was practically 
the same thing as a functor from C x A to B. No one would have been surprised 
at that. The important thing was that he realized, and showed in his 
dissertation, that all the usable properties of the functor category BA follow 
immediately from this plus a few facts about finite categories. (The analogous 
remark about function sets is trivial since the only categorically usable 
property of a set is its cardinality.) He saw function sets as a special case, since 
he saw a set as a discrete category, and he saw that analogous adjunctions 
exist in other categories, the ones now called cartesian closed categories. 

Meanwhile, independently of Lawvere, it was seven years after Kan that 
Kelly [1965] developed Kan's ideas on groups and simplicial sets far enough to 
notice the example of function sets. He and Eilenberg gave the now standard 
terminology: A closed category is one with some kind of products, and homs 
adjoint to them. A cartesian closed category is a closed category where the 
relevant product is the cartesian product. 

In both of its independent discoveries the function set adjunction was 
discovered by specializing a more general case. It was not the source of the 
more general cases. As Lawvere has said, the category of sets is just too simple 
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to suggest such definitions as cartesian closedness. The point about function 
sets really is trivial. Categorical definitions were useful in cases with more 
structure. 

Case Western Reserve University 
Cleveland, Ohio, U.S.A. 
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